

## TCP-Planet: A New Reliable Transport Protocol for InterPlaNetary Internet

#### Ian F. Akyildiz, Ozgur B. Akan, Jian Fang

Broadband & Wireless Networking Laboratory
School of Electrical and Computer Engineering
Georgia Institute of Technology

Tel: 404-894-5141; Fax: 404-894-7883

Email: {ian, akan, jfang}@ece.gatech.edu

Web: http://www.ece.gatech.edu/research/labs/bwn



### **Challenges for Transport Layer**

- Extremely High Propagation Delays
- High Link Error Rates
- Asymmetrical Bandwidth
- Blackouts

<u>2</u>



#### **Performance of Existing TCP Protocols**

■ Window-Based TCP is not suitable!!! For  $RTT = 40 \text{ min } \rightarrow 20B/s$  throughput on 1Mb/s link!!



O. B. Akan, J. Fang, I. F. Akyildiz, "Performance of TCP Protocols in Deep Space Communication Networks",

IFA'2003 IEEE Communications Letters, Vol. 6, No. 11, pp. 478-480, November 2002.



### **Space Communications Protocol Standards — Transport Protocol (SCPS-TP)**

- Addresses link errors, asymmetry, and outages
- **SCPS-TP: Combination of existing TCP protocols:** 
  - Window-based
  - Slow Start
  - Retransmission Timeout
  - TCP-Vegas Congestion Control Scheme variation of the RTT value as an indication of congestion!
- **SCPS-TP Rate-Based:** 
  - Does not perform congestion control
  - Uses fixed transmission rate

New Transport Protocols are needed !!!

IFA'2003



### **TCP-Planet**



- Objective: To address challenges of InterPlaNetary Internet
- A New *Initial State* Algorithm
- A New Congestion Detection Algorithm in Steady State
- A New Rate-Based scheme instead of Window-Based

\*I. F. Akyildiz, O. B. Akan, J. Fang, "TCP-Planet: A Reliable Transport Protocol for InterPlaNetary Internet", to appear in IEEE Journal of Selected Areas in Communications (JSAC), early 2004.



### **Initial State**

- Objective:
  - Overcome the Slow Start and RTT
  - \* Determine -> available bandwidth
  - \* **SET** the initial transmission rate,  $S_{init}$ , ASAP !!!
- Immediate Start (Within one RTT):
  - \* Emulated Slow Start Phase
  - \* Emulated Congestion Avoidance Phase
- Follow-Up (After (RTT + T) until 2 \* RTT)
  - Update transmission rate, S, according the feedbacks from the receiver



# Initial State (Immediate Start)

#### **Two Basic Ideas:**

■ Divide *RTT* into small time intervals of length *T* 

$$T = (RTT/B)^{1/2}$$

where **B** is the target transmission rate.

- → Use T as the RTT of the emulated connection.
- Use NIL Segments (low priority) to probe network conditions.



# Initial State (Immediate Start)



- Emulated Slow Start :
  - Send total  $ssthresh_e$  packets in each T where  $ssthresh_e = (RTT*B)^{1/2}$
  - Increase number of data packets and decrease number of NIL packets in T until ssthresh<sub>e</sub> is reached.
- Emulated Congestion Avoidance :
  - Increase number of NIL packets in T until t=RTT.



# Initial State (Follow-Up)

- Receiver counts and sends back the number of packets (N) it received in every T to the sender (in ACK packets).
- At *t=RTT+T* 
  - Set Initial Data Rate Sinit=N/T
- At each *t=RTT+k\*T* for *t<2RTT* (feedback for *k<sup>th</sup>* interval)
  - Update data rate  $S=N_k/T$
- $\blacksquare$  At t=2RTT
  - Move to Steady State (Hold State)



### **Steady State**

- New Congestion Control Method to address link problems (also distinguish between congestion and link errors!!)
- New Adaptive Rate-Based AIMD protocol
- Blackout State to address the link outages
- Delayed-SACK to address the bandwidth asymmetry

IFA'2003



# Steady State (Congestion Control)

- Source: Sends periodically NIX segments
  - Low and high priority
  - Small size, e.g., 40 bytes.
  - Both are sent with the same rate (= data rate).
  - Objective → Congestion decision based on the statistics of these received segments!
  - Fact 1. Since both are equal in size and both are sent with same rate, they may experience the same loss rate due to SPACE LINK ERRORS.
  - Fact 2: In case of congestion, low priority NIX segments are discarded → DIFFERENT LOSS RATES.

IFA'2003



## Steady State (Congestion Control)

Let

 $\Phi := N_{low} / N_{high}$ 

If  $\Phi < 1 \rightarrow CONGESTION!!!!$ 

#### NOTE:

**Receiver does not ACK NIX segments** 

but periodically sends back the number of low and high NIX packets received, i.e., N<sub>low</sub> and N<sub>high</sub> within a sliding time window.

<u>12</u>



## Steady State (Congestion Control)

- Compare  $\Phi$  with  $\Phi_d$  and  $\Phi_i$  (Congestion Decision Thresholds)
- **If** (Ф> ф<sub>i</sub>)
  - Move to *Increase State*  $\rightarrow$  *S*=*S*+ $\alpha$
- **If** ( **P** < **P**<sub>d</sub> )
  - Move to Decrease State → S=S\*ξ
- $\blacksquare \text{ If } (\phi_d < \Phi < \phi_i)$ 
  - Move to Hold State → S=S



## Steady State (Adaptive Rate-Based AIMD)

- Default AIMD parameters  $(\alpha=1, \xi=0.5)$  not suitable for long delay space links
- Throughput, T, depends on RTT, p,  $\alpha$ , and  $\xi$ .

$$T = \frac{\alpha}{4 \cdot (1 - \xi)} \left[ 1 + \xi + \sqrt{(3 - \xi)^2 + \frac{8 \cdot (1 - \xi^2)}{\alpha \cdot RTT \cdot p}} \right]$$

- New Adaptive Rate-Based AIMD scheme
  - Set  $\xi$  high from (1> $\xi$ >0.5).
  - Adjust AIMD increase parameter  $\alpha$  based on link conditions  $RTT_i$  p to reach target throughput B

$$\alpha = \frac{(1+\xi)}{2} \left( B + \frac{1}{RTT \cdot p} \right) \left[ \sqrt{1 + \frac{8B^2(1-\xi)}{\left( B + \frac{1}{RTT \cdot p} \right)^2 (1+\xi)^2}} - 1 \right]$$



## Steady State (Blackout State)

- If sender does not receive ACK for a certain period → goes to Blackout State
- Blackout State
  - Objective: To reduce the throughput degradation due to blackout.
  - Source stops sending new data packets but keeps sending NIX packets.
  - Receiver keeps sending NIX ACKs including  $N_{low}$  and  $N_{high}$ .
  - If the source starts to receive NIX ACKs with  $(N_{low}=0, N_{high}=0) \rightarrow \text{goes to } HOLD State.$
  - Otherwise, the new state is decided based on



## Steady State (Bandwidth Asymmetry)

- ACK for each packet leads to congestion in the reverse link for asymmetrical space links
- Delayed-SACK
  - SACK is used for reliability.
  - Receiver delays SACK packets to avoid congestion in the reverse link.
  - If no packet loss, then receiver sends 1 SACK per d (delayed-SACK factor) received packets.
  - If packet loss occurs (SACK fields need to be updated), receiver sends a new SACK immediately.



# Performance Evaluation (Initial State)



■ Initial State (TCP-Planet) vs. Jump Start (TCP-Peach+) and Slow Start (TCP); RTT=600 sec; p=10<sup>-5</sup>; Target Rate =100packets/sec.
IFA'2003



# Performance Evaluation (Throughput)



Throughput vs. File size;  $RTT=600 \text{ s, } p=10^{-5},10^{-4},10^{-3}$ , Link 1Mb/s; Target rate = 100 packets/sec ( $\Rightarrow$  100 KB/sec for data packets of size 1KB). NOTE: 200 MB  $\Rightarrow$  Vegas (SCPS-TP)  $\Rightarrow$  30 B/sec;



# Performance Evaluation (Throughput)



■ Throughput vs. RTT; File Size=50MB, p=10<sup>-5</sup>, 10<sup>-4</sup>,10<sup>-3</sup>, Link Rate: 1Mb/s, Target Rate = 100 KB/s



### Performance Evaluation (Overhead)



TCP-Planet Overhead due to NIL (in Initial State) and NIX (in Steady State) packet transmissions. Varying file size, RTT=600 s, p=10⁻⁵, 10⁻⁴, 10⁻³, link 1Mb/s, Target IFA′2003 rate = 100 KB/s



#### Conclusions

- Existing TCP protocols not suitable for InterPlaNetary Internet
- **TCP-Planet for InterPlaNetary Internet** 
  - New Initial State instead of Slow Start
  - New Rate-based AIMD instead of window-based
  - New Congestion Control to address link errors
  - Blackout State to address link outages
  - Delayed SACK for bandwidth asymmetry

Performance evaluation shows TCP-Planet addresses the challenges and significantly improves the network performance.

I. F. Akyildiz, O. B. Akan, J. Fang, "TCP-Planet: A Reliable Transport Protocol for InterPlaNetary Internet", to appear in IEEE Journal of Selected Areas in Communications (JSAC), early 2004.

IFA'2003 21